Game Loader COMMODORE 64 ATARI 2600 Adaptor

White Paper From RelationalFramework.com

Introduction

Game Loader is an Atari 2600 Emulator for the Commodore 64 that adds fantastic Commodore Graphics to Atari 2600
games!

Background

C64 — The Commodore 64 is the most popular home computer of the 80’s.
Atari 2600 — The Atari 2600 is the most popular video game console of the 80’s.

Inspiration

Inspired by Jack Tramiel and the Vaporware add for Game Loader from 1983

Innovation Benchmarking

Game loader uses Innovative Technologies to
achieve 1 MHz system emulation on 1 MHz target
platform at full speed with cycle precise transition
for side-by-side comparisons:

Commodore 64 Atari 2600 Emulator Silly Venture
Benchmarking (relationalframework.com)

Technical Details

Game Loader recompiles the source and combines it with the emulator to create stand alone program binaries that can
load from Tape, Disc or Cartridge on the Commodore 64.

Game Loader is currently compatible with CBS RAM and SuperCharger Atari games.

The high-performance soft ANTIC kernel has been ported at 100% speed and includes one demo of the kernel
outperforming a real Atari 2600.

http://relationalframework.com/C64ATARI2600emulator2.htm
http://relationalframework.com/C64ATARI2600emulator2.htm

Hybrid emulation — Atari 2600 Shadow bus for C64 register cascades for real time emulation of the game loop combined
with Kernel cores for each game or set of games that use the same kernel are added to the kernel library allowing cycle
exact transition of even the most high-performance Atari 2600 games!

Greater compatibility - Playing Atari games that even the real hardware cannot:

Atari games that can only under CBS RAM or only under the SuperCharger memory formats are fully supported by the
Game Loader Atari Adaptor. One example is the new SuperCharger Space Invaders that runs in Game Loader and under
CBS RAM, but not on a real SuperCharger because it runs out of Memory.

Extra Game Loader Features
Adding custom PETSCII graphics to Atari games

Custom PETSCII graphics can be applied to the foreground and background tiles, comprised of 4 PETSCII characters each.
These can be defined in the emulator as filter settings to be static bound, or can be dynamically changed at runtime by
C64 side only feature set and commands per the PETSCII demo.

TIA sound emulation with SID

There are currently two TIA sound emulation routines implemented in the emulator, real time register manipulation
wrapping the Shadow bus TIA registers to the SID which is supported in VICE and on the real C64, and more dynamic soft
synth conversion in the Framework APl which fails in VICE as “SID overflow”.

Status Working great in beta more to be done....

Emulating TIA sounds form the twin oscillators on the SID’s is a 29 register cascade in real time.
Compatibility with Classic Atari Games — per Kernel CORE added.

Adding custom VIC-II cores — Custom cores for batari BASIC and batari BASIC SuperChip Atari games planned.
Future expansion ideas

Adding ARM and DPC Compatibility for enhanced Atari games like PITFALL Il via an ARM expansion board like C64
Chameleon cartridge.

Game Loader on Other Systems — Atari 400/800/5200 was previously under development, NES may be next:
NOAC potential in Atari Flashback to run real Atari Games

The Atari Flashback initially used a Nintendo on a Chip and featured imitation Atari games that were really Nintendo
games. With the Game Loader technology for 1 MHz on 1 MHz emulation this product could have succeeded. Existing
Flashback 1 units can potentially be reloaded with the Game Loader emulator playing real Atari games on the NOAC!

Television Threading Model Implementation [coding to the CRT]

| Init Code | Run 1X Architecture: The Atari 2600 races the beam to
program classic Television. Atari game loops run
inside the vertical blanks.

Vertical Blank — GamelLoop

Television | (Raise Event)
Display Kitchen Sink Loop

Vertical Blank — GamelLoop2

Read Racing the Beam for more details on Game
Loader Architecture

The Soft ANTIC Blitter Kernel:

The Soft ANTIC Blitter Kernel functions like the
0,0 Nintendo PPU to scroll a playfield Camera around
a large tile mapped virtual world.

Play |0 It also allows the screen to be split into

Field 20 independent scroll zones each with it’s own
Camera just like Atari Home Computers as shown
in the Display List Demo:

20

Large Virtual World
92

ATARI 2600 ‘ Assembly programs and SuperCharger BASIC and

BASIC PROGRAMMING
T TR T —

Atari Flashback BASIC are supported allowing
Cross development on the Atari 2600 and
Commodore 64 platforms with an extended
feature set available on the Commodore 64 for
creating Super Atari 2600 games.

The batari BASIC standard and 8K SC kernel are

Game Loader is compatible with Assembly and BASIC being ported next since these kernels will enable

Atari 2600 Game Program Cartridges and Cassettes the largest volume of Homebrew games to run

using CBS RAM and SuperCharger enhanced formats. with no-changes to the code-whlle adding
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEENEEN FantastlcCommodoregraphlcstothegames!
Gameloader ouptputs standalone C64 prg binaries with

the emulator and source combined allowing fantastic
Commodore graphics to be put on the ROMS!

Simple classic BASIC Programming Example from the 2021 10 Liner contest http://Basic10liner.com

0 » > N

Cod_Atani_SuperCharger_BASIC.ps1

P |

&=

SuperCharger_Disk_BASIC.ps1

ATARI_FLASHBACK_BASIC_Compiler.ps1

& B

10LineBlitzlltet X

Classic vintage BASIC Programming with line
numbers and no extra graphical workspace
structures like in the 80’s is supported and can
access the NES PPU style functions of the soft
ANTIC Blitter kernel. You can see from the simple
BASIC listing above the Atari 2600 registers are
dynamically manipulated in the source code.

None of this code is changed because the
emulator sub framework bound to the prg binary
includes an Atari 2600 Shadow bus full of these
Shadow registers as part of the innovation for
real time emulation of 1 MHz systems on a 1 MHz
platform with B-tree style balancing of the TTM
Television Threading Model.

@k VICE: C64 emulator at 99% speed, 59fps — O et

File

Edit

Snapshot

Options Settings Language Help

Applying Fantastic Commodore PETSCII Graphics:

CHE-AE= =HE AF AR
1| | R | 0 | G5 | 5 | S
| 0| = 01 ol|ol|mw
Q| W | E ¥ | Ul | 1] o8| PY | &R
e | v | 8 m |~ ol ol
A S D H J K L 2 $
s | & | B 2|8 |@| o8 K
Z X C N M . : ? N
B | 8| m ™| m
LEBRE- BEE

The two commented lines below the PETSCII
Symbols keyboard illustrate how easy it is to
dynamically redefine the four PETSCII
graphics characters in the Foreground and
Background tiles while the program is
running. Note the lines are commented
because they will not work on a real Atari
2600 but can be used to enable Super Atari
games for the Commodore 64 with extra
functionality! The PETSCII video on the
benchmarking page shows a programmatic

http://basic10liner.com/

nangeup:

ndTi1eChar example of an Atari 2600 “Super program”.

Applying PETSCII filters in Game Loader may create new versions of existing Atari games:

Gk VICE: C64 emulator — O >

File Edit Snapshot Options Settings Language Help Adding Stars and Stripes to BERSERK2000 R3
changes the game because the sup playfield pixel
elements interact like tiny pieces of playfield
“semigraphic shrapnel” adding new functionality
to Super Atari games never before seen!

Sometimes a variation or an entirely new genre of
Atari 2600 Super game may emerge just from the
static application of Fantastic Commodore
graphics in Game Loader emulators PETSCII
settings screen for the C64 prg binary!

Complex BASIC and Assembly Example

BERSERK2000 R3 became Berserk Stars and Strips with no changes to the code! How’d that happen? Here’s the complex
BASIC program listing where soft ANTIC display lists are used as well as graphical ASCII art to “draw” the virtual world
and the sprite definitions, and a Tracker/Sequencer chip tune musical score is also present at the end of the listing.

The format is very familiar for batari BASIC programmers except for the simple Tracker/Sequencer which shapes the
notes for interesting sounds on the Atari or C64 and is very simple and intuitive to use! The playfield CAM and Display
Lists are of course also new to bB programmers and allow speeds rivaling Assembly.

Inline Assembly and BASIC enhancement features

Inline Assembly is slightly different than in batari BASIC and the “:” concatenator operator enables horizontal (wider)
Assembly code design. You will see two gameloops compared to one in batari BASIC to allow more processing time and
dynamic balancing. There is also a “Kitchen Sink” section for more time if the Video Signal is changed (the soft ANTIC
Blitter Kernel can output 30 Hz or several variable Hz rates, but this game is at the normal non-standard 60 Hz Atari
signal):

Program listing with no changes to the code where just the PETSCII filter creates a new
game:

Compatible with the Atari Flashback Portable and all Atari consoles!
(Cross compiles under Atari Flashback BASIC or SupercCharger vwBASIC)

version history:
vl smooth running man in a scrolling maze world

rem v1.1 computer opponents added (no AI) with N smart multiplexing character
sprites

rem Rolled back to vl to used motion blur reduction and 4 character sprites with
even multiplexing

rem 20190808 MBR CAM mechanics - board scrolling 2 tile pixel bursts (vertical)
and (horizontal)

rem 20190809 Adding AI for 3 balanced character opponents (replaces variable
flicker)... done

rem color map board for scrolling - Done >> color sections scroll,
colors selected from https://www.randomterrain.com/atari-2600-memories-tia-color-
charts.html

rem 20190809 Add AI notes ... !AI players can change dir (delay) each frame turn
1T a w§11 is encountered! (saves cycles and adds escape delay for the human
player

rem 20190812 AI players 2 and 3 are reusable - excellent! only 400 bytes free;
repeat this opt:

rem make AI player 1 similarly reuse variables and routines with human
player... WIP

rem Smart shots should follow players Tike Robots do WIP

rem making direction/bounce routine reusable

rem 20190814 removed distortion; tracker changes the envelope every frame

rem adding ricochet shots

rem 20190821 with Chiptune III - catchy synth fx tune

rem 20190828 Also adding more intelligent maze rebuilding based on blue & green
robots row for the Y tile axis (2)...

rem 20190828 Added subtune when clone regenerates

rem 20190829 Fixed players ghosting semi-static on top row

Eem 20%90829 Fixed players ghosting to the left when leaving the camera view on
the right

rem 20190830 Added red and green pulse waves (not flashes) from enemy or friendy
fire impact

drem 20211207 Automated tandem control with the CPU for computer assisted play or
emo

rem 20211207 including as bonus hidden demo in Sillyventure2021 entry (press
button when "Party in Gdansk!"™ appears to play! :)

rem 20211207 Added PlusCart/uUnoCart CTRLPF=0 fix to turn off reflective
playfields for loads other than main

rem
rem Joystick - Player

rem select/reset - change color schemes
rem bw - otto (difficult)

rem Teft difficulty - Advanced/Beginner

rem vars

rem i,3,k,1 Toop vars

rem t toggle, x,y (playerO x,y virtual world coordinates)

rem m,n,o incremental smooth movement counters

rem s kickout for fast movement during 30 FPS scrolling

rem r,q 30 FPS scroll burst x/y duration

rem px,py human player0O x,y fine coordinates

rem X,y,e_human player0 spr1te X,y tile coordinates and direction

rem u,v playerO sprite mirror fine coordinates

rem bx,by,g player0O sprite mirror x,y tile coordinawtes (DIR 1lst AI player)

rem freed - var2,score playerl spr1te x,y fine coordinates

rem w,Z,p p]ayerl sprite x,y tile coordinates and direction (next robot
character is reloaded from RAM array)

rem --- ?7Laserbeam tile coordinates, ??>0 is the trip

rem --- ?? Laserbeam direction

rem --- h AI pointer

rem -- varl,var2,score,f > missile0/missilel direction and duration variables
(next ball character is reloaded from RAM array)

rem ---init section, runs once:

a=0:gosub Tloadvirtualworld:rem playable Flashback version blue and green robots
are frozen, why?

rem SUPERCHARGERID=99:rem bonus playable demo for Sillyventure2021 competition
on 20211212!

CTRLPF=0:rem PlusCart/uUnoCart fix, turns off reflective playfields for Toaded
programs other than main

rem BITIndex=0

rem loadplayer0(0)

rem bind sprite to semigraphics virtualworld tile:

x=3:y=3: rem *****%%** player 0 virtualworld tile coordinates

bé 3_b§ 5:rem g=5: rem playerO sprite mirror X,y,direction (1st AI player 1init
and dir
dre? w=3:z=3:p=2: rem **** player 1 sprite x,y,direction (2nd AI player 1init and
ir

w=vars(0) :z=vars (1) :o=vars(2) :p=vars(3)

rem ---gameloop subroutine, runs every frame:
rem BYTErowoffset=120
rem

rem -- piggyback missilel propegation for relfecting shots
rem --- propegate players bouncing shot if it is in progress:
if f=0 then missilely=0:goto skipshotla

rem check for collision with the wall and bounce

if CXM1FB >126 then AUDCO=12:AUDV0=7:gosub nextdir:score=robotAI(h)
if score=1 then missilely=missilely+l:missilelx=missilelx-1
if score=2 then missilely=missilely+1

if score=3 then missilely=missilely+l:missilelx=missilelx+l
if score=4 then missilelx=missilelx-1

if score=5 then missilelx=missilelx+1

if score=6 then missilelx=missilelx-1l:missilely=missilely-1
if score=7 then missilely=missilely-1

if score=8 then missilelx=missilelx+l:missilely=missilely-1
s?igshotl

=f-1

skipshotla . _
rem clear collision register

rem -- e direction : 12 3
rem 4 05
rem 67 8

rem -- end piggyback missile0

rem --- 2x speed check console switch:if SWCHB|%11110111<>255 then
scrollvirtualworldtoggle=35:gosub DLI:scrollvirtualworldtoggle=0:goto O:rem
double speed - every frame

rem Rollback, no DLI's this game: if t=0 then scrollvirtualworldtoggle=33:gosub
DLI:scrollvirtualworldtoggle=0:return: rem run this DLI every other frame

rem -- cycle playerO and playerl sprites at 30 hz each
if t=0 then goto DoPlayer0

rem pull for first robot call:

w=vars(0) :z=vars(1l):o=vars(2) :p=vars(3):playerlx=vars(4):playerly=vars(5)
rem 3,3,0,2,0,0

COLUP1=$BA:rem solid color sprite

AIOpponentTwo rem -- reusuable routine can be overloaded for #3 called from
bottom blank if vars are swapped!

rem check for collision with AI Robot 2 or 3 and send it back home and deflect
the ball but don't destroy 1it:

rem 20190830 if CXMOP >126 then AUDC0=12:AUDV0=12:w=0:z=3:p=5:0=0:gosub
nextdir:var2=robotAI(h)

if CXMOP >126 then AUDVO=playerOx:w=0:z=3:p=5:0=0:gosub nextdir:var2=robotAI(h)

rem -- 20190810 tile mapped 4 30 Hz balanaced opponents, adding AI ...
rem -- relocating playerO mirror sprite AI to bottom vertical bank for Tload
balancing (when t=1)

rem --

rem mirror for sprite 1: todo after adding...

rem ??=playerlx:??=playerly: rem hold player 1s xy (on overload do this!)

rem 20190810

rem shadowcopy call at end handels storing, full restore is here: playerlx=var2:
playerly=score: rem restore player 1 mirror's X,y

rem --- cycle player animation
rem too slow i=0/2:i=1+b
" lda n: Isr: sta i: bcc fastercalcdone2: inc i:fastercalcdone?
i=spritemap(i):loadplayerlupsidedown(i)
rem loadplayerlupsidedown(o)
rem establish direction of tile based move if m is free
if p=1 or p=4 or p=6 then REFP1=255 else REFP1=0
if 0>0 then goto skipdirection2ax

~vwpixel(w,z,bindplayerl): rem binds the completed move after the micro
increments (or the initial move)
COLUBK=0

rem -- e [p!] > direction:
rem
rem
rem
rem

and y for polling potential target square rollback
1:goto skipdirectionax

1:goto skipdirectionax
=8
=8:

3
e

EEI—‘I—‘I—‘NNNﬂ

11l o
1 M

skipdirectionax
:goto skipdirectionax
goto skipdirectionax
o skipdirectionax
o skipdirectionax

TTIRTRT
ANOCOONWR -
TINNITTTS
COCON N = 000000
e w4+ 4+ | wmomms
fiﬁﬁfﬁlNNNU’)
HHméNHHH1

p=5

skipdirectionax

if vwpixel(w,z,pol11)<>0 then w=i:z=j:0=0:gosub nextdir:p=robotAI(h):return:rem p
should get reassigned here from dir array!

return:rem 20190813 timing fix!
skipdirection2ax

if s>0 then goto skipsmoothtilemoveax

1? p=1 then p}ayerly p}ayerly+l playerlx=playerlx-1

if p= ING ly+1

then playerly=playerly+l:playerlx=playerlx+1l
then playerlx=playerlx-1

then playerlx=playerlx+1l

then playerlx=playerlx-1l:playerly=playerly-1
then playerly=playerly-1

then playerlx=playerlx+l:playerly=playerly-1
skipsmoothtilemoveax

if 0=0 then p=0 else o=0-1

johohohohokol
(L L [(A

coNOoOYUVTh W

rem preserve player 1 X,y

rem if playerlx < 8 or playerlx>156 then playerly=0

rem if playerly < 7 or playerly>92 or playerlx>160 then playerly=0:goto
AIskipball2

if playerly<1l0 or playerly>96 or playerlx>160 then playerly=0:goto AIskipball2

rem --- fire bouncing shot Tasting 20 frames if not in motion (var 2 dir mirrors
E)

if f=0 then f=135:score=p:missilelx=playerlx:missilely=playerly-
4:AUDC1=6:AUDF1=30

if f>127 then CXCLR=0:rem -- keep missile clear of Tlauncher

AIskipball2

rem freeing these vars! var2=playerlx:score=playerly

return

DoPlayerO0 rem Human Player:

rem oops e=p:rem 20211207 automate human player with the AI for cooperative demo
play!

rem vwpixel(6,7,bindplayerl):rem playerly=70:playerlx=33:COLUP1=$A8:rem was A6
rem space saver for i=0 to l:playerOcolors(i)=$fe:next i: rem $B6

playerOx=px:playerOy=py: rem restore player 0's x,y _
rem -- m = microincrement for smooth movement between tile based moves

rem --- cycle player animation

rem TOO SLOW i=m/2:i=i+b:

" lda m: Tsr: sta i: bcc fastercalcdone3: inc i:fastercalcdone3
i=spritemap(i):loadplayerQupsidedown(i)

rem loadplayerOupsidedown(m)

if e=1 or e=4 or e=6 then REFP0=255 else REFP0=0

rem bad? if m=0 or s=1 then vwpixel(x,y,bindplayer0)

if m=6 then gosub dynamicboard

rem establish direction of tile based move if m is free
if m>0 then goto skipdirection2

vwpixel(x,y,bindplayer0): rem better?
rem trying alt Toop for 30 hz split

rem if joyOfire=1 and bx=0 then:g=e

rem -- e direction : 1 2 3
rem 405
rem 6 7 8
i=x:j=y: rem preserve x and y for polling potential target square rollback

rem if joyOup=1 and joyOleft=1 then e=1:m=8:y=y-1:x=x-1l:goto skipdirection
rem it joyOup=1 and joyOright=1 then e=3:m=8:y=y-1:x=x+1l:goto skipdirection
rem if joyOdown=1 and joyOleft=1 then x=x-1l:y=y+l:e=6:m=8:goto skipdirection
rem if joyOdown=1 and joyOright=1 then y=y+l:x=x+1l:e=8:m=8:goto skipdirection
rem if joyOup=1 then e=2:m=8:y=y-1: rem space saving! goto skipdirection

rem if joyOdown=1 then e=7:y=y+1:m=8:rem space saving! goto skipdirection

rem if joyOleft=1 then e=4:m=8:x=x-1l:rem space saving! goto skipdirection

rem it joyOright=1 then e=5:m=8:x=x+1

rem grab demo AI 20211207:

e=p:rem e=p got stuck in quarantine after 1m!
rem if e=0 or e=2 then e=g

rem if e=0 or e=2 then e=g else e=p

e=g

rem if e=2 then e=p

rem allow user to override for tandem controls:
if joyOleft=1 then e=4:c=1
if joyOright=1 then e=5:c=2

if joyOup=0 then goto notup

e=2

if c=1 then e=1

if c=2 then e=3
notup

if joyOdown=0 then goto notdown
e=7

if c=1 then e=6

if c=2 then e=8

notdown

doneusercontrol

if
1f

then
then
then
then
then
then
then
then

x-1l:goto skipdirection
x+1l:goto skipdirection
m=8:goto skipdirection
m=8:goto skipdirection
rem space saving! goto skipdirection
:rem space saving! goto skipdirection
:rem space saving! goto skipdirection

1X
1X
1:
1:

|
HHme<HH
o

X >< S ><“<“<“<

OOOO“i OO“i X 00 0
X X =< I—‘I—“<‘<

DDOMD®MD®M®MmIMM
UVANNOCOO W
S3IK3IK X33

—+

skipdirection
if vwpixel(x,y,pol1)<>0 then x=i:y=j:m=0:e=0:rem return
return:rem 20190813 timing fix! (trim superfluous return above)
skipdirection2
f s>0 then goto skipsmoothtilemove
if e=1 then playerOy=playerOy+1l:playerOx=playerOx-1
then playerOy=playerOy+1
then playerOy=playerOy+1l:playerOx=playerOx+1
then playerOx=playerOx-1
then playerOx=playerOx+1
then playerOx=playerOx-1:playerOy=playerOy-1
then playerOy=playerQOy-1
then playerOx=playerOx+1:playerOy=playerOy-1
othtilemove

nomommommmoo

=2 | | | (o o 1 A

OOO\lmu-l-wa

it m=0 then e=0:goto donesmoothtilemove
m=m-1

i=x-BITIndex: rem set x,y Camera scrollbursts
if i<5 and m=1 and BITIndex>0 then =2
if i>15 and m=1 and BITIndex<71 then g=2

j=BYTErowoffset/12:i=y-j

1if i<3 and m=1 and BYTErowoffset>0 then r=2 : rem 20190808 This must scroll
vertically 1in increments of 2 contiguous postions - 2 and 4 vertical tile pixel
scrolls are ok, 1 and 3 break it! (why?)

if i>7 and m=1 and BYTErowoffset<196 then r=2
donesmoothtilemove rem return:rem

rem --- fire bouncing shot Tasting 20 frames if not in motion (var 2 dir mirrors
E)

rem 20211207 autofire unless surpressed

if joyOfire=0 and varl=0 then
varl=135:var2=e:missileOx=playerOx:missileOy=playerOy-4:AUDC0=4:AUDF0=29

rem if varl>127 then CXCLR=0:rem -- keep missile clear of Tauncher

rem if m=0 then

gosub movevirtualworld

rem 20190809 no variable flicker: vwpixel(px,py,bindplayerl)
rem

return
rem ---subroutines

movevirtualworld rem move the world

if g=0 and r=0 then s=0:scrollvirtualworldtoggle=0:return else
scrollvirtualworldtoggle=1: rem s=0 not supressing micro movement 20180608 queued
to scroll the CAM 1in any direction

rem deactivated for streamlined MBR revision of the game 20190806 , back on
s=1: rem --surpress micro movement

if g=0 then goto donehorizontalmoveCAM

rem

rem -- e > direction:

rem

rem

if BITIndex =72 then goto skipdechitindex

if e=8 or e=3 or e=5 then BITIndex=BITIndex+1
skipdecbitindex

if BITIndex=0 then goto skipincbitindex

if e=1 or e=4 or e=6 then BITIndex=BITIndex-1
skipincbitindex

g=q-1
donehorizontalmoveCAM

if r=0 then goto doneverticalmoveCAM
if e=<4 and e>0 then BYTErowoffset=BYTErowoffset-12
if e>5 and BYTErowoffset<244 then BYTErowoffset=BYTErowoffset+12

r=r-1 _
doneverticalmoveCAM

rem scroll virtual world when user 1is in proximity to border

return:rem

nextdir
if h>50 then h=0 else h=h+1: rem robotAI cycle commands (BIG Trek robots!)
return

rem w=vars(0):z=vars(l):o=vars(2):p=vars(3):playerlx=vars(4):playerly=vars(5)

shadowcopy rem seed i before call (varsinit autoincrements on 1it)

j=w:gosub varsinit: j=z:gosub varsinit: j=o:gosub varsinit: j=p:gosub varsinit
j=playerlx:gosub varsinit:j=playerly:gosub varsinit

return --shadowcopy return

rem ---end subroutines

rem ---gameloop2 subroutine, runs every frame:

rem -- piggyback missile0 propegation for relfecting shots
rem --- propegate players bouncing shot if it is in progress:
if varl=0 then missileOy=0:goto skipshotOa
rembcheck for collision with the wall and bounce -- 20190829 different tones for
ounces. ..
CXMOFB >126 then CXCLR=0:AUDCO0=12:AUDFO=h:gosub nextdir:var2=robotAI(h)
var2=1 then missileOy=missileOy+1l:missileOx=missileOx-1
var2=2 then missileOy=missileOy+1
var2=3 then missileOy=missileOy+1l:missileOx=missileOx+1
var2=4 then missileOx=missileOx-1
var2=5 then missileOx=missileOx+1
var2=6 then missileOx=missileOx-1:missileOy=missileOy-1
var2=7 then missileOy=missileOy-1
var2=8 then missileOx=missileOx+1:missileOy=missileQy-1

skipshotO
varl=varl-1

skipshotOa o _
rem clear collision register

rem -- e direction : 12 3
rem 4 05
rem 67 8

rem -- end piggyback missile0

t=1-t:rem toggle

rem 20190806 deactivated for streamlined MBR revision of the game 20190806 if
t=0 then scrollvirtualworldtoggle=30:gosub DLI:scrollvirtualworldtoggle=0:return:
rem run this DLI every other frame

rem --- Character Hz throttle - show characters only if they are in camera view

if t=1 then goto DoPlayer0Oa
SUSTAINFORFRAMES=SUSTAINFORFRAMES+1

rem 1st preserve existing:
1=0:gosub shadowcopy: rem this call should be in the other gameloop (balance it
if necessary)

rem mirror for sprite 1, 3rd AI player... --- automate with call wrapper (reuse
routine call above)...

rem vwpixel(20,11,bindplayerl):rem playerly=50:playerlx=80:

rem loadplayerlupsidedown(0):

COLUP1=$86:rem was FA

rem pull:

w=vars(6):z=vars(7):o=vars(8) :p=vars(9):playerlx=vars(10):playerly=vars(11l)
gosub AIOpponentTwo

1=6:gosub shadowcopy: rem preserve (push)

return:rem end mirror for s prie 1, 3rd AI
player

DoPlayer0Oa

rem mirror for sprite 0O
px=playerOx:py=playerOy: rem hold player 0's x,y
rem 20190810

rem check for collision with AI Robot 1 and send it back home and deflect the
ball but don't destroy it:

rem need speed and space, check bit 6: if CXMOP>62 and CXMOP<127 then
CXCLR=0:v=0:AUDCO=1:AUDV0=3:bx=0:by=3:g=5:n=0:gosub nextdir:var2=robotAI(h)

rem there will be an (intentional) delay in the Grenade effect (one at a time to
allow merging concurrent fx)

rem restore player 0 mirrors x y

playerOx=u:playerOy=v

rem 20190815 save space here and better Fx?

if varl>122 then CXCLR=0:rem -- keep missile clear of Tlauncher

rem 20190828 If player shoots clone play special theme (tune II)

rem BIT CXMOP: bvc dontdoreset:doreset lda #0: sta v: sta bx: sta n: sta CXCLR:
lda #6: sta AUDCO: 1lda #30: sta AUDFO: sta SUSTAINFORFRAMES: Tlda #3: sta by: sta
g: jsr Lnextdir: 1ldx h: T1da robotAI,x : sta var2 ; : bne ballsdone :dontdoreset

" BIT CXMOP: bvc dontdoreset:doreset T1da #0: sta v: sta bx: sta n: sta CXCLR:
Tda #$D2 : sta COLUBK: lda #240: sta MUSICINDEX: lda #3: sta by: sta g: jsr
Lnextdir: 1ldx h: lda robotAI,x : sta var2 ; : bne ballsdone :dontdoreset "

" BIT CXM1P: bpl ballsdone:doreset?2 lda #0: sta v: sta bx: sta n: sta CXCLR:
Tda #240: sta MUSICINDEX: sta COLUBK: lda #3: sta by: sta g: jsr Lnextdir: ldx h:
1lda robotAI,x : sta score ; "

"ballsdone"

rem vwpixel (bx,by,bindplayer0):rem playerOx=75:playerOy=20
rem superflous call, freeing cycles!!!! ToadplayerOupsidedown(0):
rem space saver for i=0 to l:playerOcolors(i)=%$84:next i

rem -- AI, initial dir is 5 for 1lst Robot , so:
data vars 3,3,0,5,0,0,4,4,0,5,0,0

data robotAI
1,8,7,2,3,4,6,5,4,2,7,1,4,6,3,8,5,2,6,7,1,4,3,2,4,1,8,7,7,2,5,5,5,4,4,4,4,2,7,1,3
,6,8,7,4,3,1,6,4,5,5,3

data spritemap 0,8,16,24,32,40,48:rem ,56 quick Tookup table to save cycles

rem data fasty
0,12,24,36,48,60,72,84,96,108,120,132,144,156,168,180,192,204,216,228

rem --- cycle player animation

rem too slow: i=n/2:i=1+b

" lda n: Tsr: sta i: bcc fastercalcdone: 1inc i:fastercalcdone
1—spr1temap(1) 1oadp1ayer0ups1dedown(1)

rem i=n*8:loadplayerOupsidedown(i)

if g=1 or g=4 or g=6 then REFP0=255 else REFP0=0

rem establish direction of tile based move if m is free
if n>0 then goto skipdirection2a

vwpixel(bx,by,bindplayer0): rem binds the completed move after the micro
increments (or the initial move)

rem -- e [g!] > direction:
rem
rem
rem
rem

j=by: rem preserve x and y for polling potential target square rollback
then n=8:by=by-1:bx=bx-1:rem space saver--- goto skipdirectiona
then n=8:by=by-1:bx=bx+1l:rem space saver---goto skipdirectiona
then n=8:by=by-1l:rem space saver---goto skipdirectiona
then bx=bx-1:by=by+1:n=8:rem space saver---goto skipdirectiona
then by=by+1:bx=bx+1:n=8:rem space saver---goto skipdirectiona
then by=by+1:n=8:rem space saver---goto skipdirectiona
then n=8:bx=bx-1:rem space saver---goto skipdirectiona
=5 then n=8:bx=bx+1
skipdirectiona
if vwpixel(bx,by,pol1)<>0 then bx=1i:by=j:n=0:gosub
nextdir:g=robotAI(h):return:rem g should get reassigned here from dir array!
goto assignandreturn:rem 20190813 timing fix!
skipdirection2a
s>0 then goto skipsmoothtilemovea

then playerOy=playerOy+1l:playerOx=playerOx-1

then playerOy=playerOy+1

then playerOy=playerOy+1l:playerOx=playerOx+1

then playerOx=playerOx-1
then playerOx=playerOx+1
then playerOx=playerOx-1:playerOy=playerOy-1
then playerOy=playerQOy-1
=8 then playerOx=playerOx+1l:playerOy=playerOy-1

skipsmoothtilemovea

if n=0 then g=0 else n=n-1: rem g should get reassigned from an array of AI
directions or player 1 stops after 1 move

L\IOOONUJI—‘U

X:
g
g
g
g
g
g
g
g

uuuuuuuuuu
CONOUVTARWN =

rem preserve player 1 X,y

rem if playerOx < 8 or player0Ox>160 then playerQOy=0

rem if playerOy<7 or playerOy>92 or playerOx>155 then playerQOy=0
if playerOy<10 or playerOy>96 or playerOx>160 then playerQOy=0

assignandreturn
u=playerOx:v=playerQy
rem superflous! return

rem --

return:rem not superfluous!

rem --- end gameloop2 (bottom vertical blank)

varsinit rem 1i,j indexi ,j value, then index i increments
vars(i)=]
1=1+1l:return

dynamicboard

rem -- make dynamic changes to board
rem gosub nextdir

1=h+8

rem " lda i: Isr : Isr : sta j
rem j=j+4

rem 20190828 intelligent optimzation to follow green/blue robots row for the Y
tile axis (z);

rem freeing space also!

rem deprecated, too busy try this:

j=robotAI(h)+2

vwpixel(i,j,flip)

return

rem ---KITCHENSINK subroutine, runs when scrollvirtualworldtoggle=1

rem -- map virtual world row colors to Camera

rem rowcolors() 1is a built in 1x10 array variable of Camera row colors.

rem

rem data xscreencolors
$b4,$b6,$b8,%c8,$88,%$86,$84,%$82,%fa,$f8,$f6,%$f4,$38,%$36,%$34,%$32,%1C,$1A,$18,%16
data xscreencolors
$84,$84,%$84,%$84,%64,%64,%64,%64,$58,$58,$58,$58,%$44,%44,%44,%44,%c6,$c6,%$c6,$c6
j=BYTErowoffset/12:k=j+9:1=9

for i = j to k

rowcolors(1)=xscreencolors(i)

1=1+1

if 1=10 then 1=0

next i: rem done mapping virtual world row colors to Camera

n=0:j=0:1=2:gosub varsinit:i=8:gosub varsinit: rem clear micro movement on
player 2,3

rem

rem ---end KITCHENSINK (full frame. lots of time to fit the kitchen sink)

rem

rem --camera pans a 20x10 tile window, 1/10th view of the gamegrid; 200 tiles
out of 2000

rem - Virtual world and sprites: a 92x20 tile semigraphics gamegrid and 8x8
pixel sprites

virtualworld

XXXXXX XXX XXX XXXXX XXX XXX XXX o XXXXXKXXXXXXXXXXXXXXXXXXXXXX « XXXXX XXX XX XXX XXX XXX
XX XX XXX XXX X

XXX XXX XXX XXX XXX XX XXX KX X KX XXX XXX KX XXX XXX KX XXX XXX KX XXX XXX XX XXX XXX XX XXX XXX XX XX XXX
XXXXXXXXX .

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX XXXXXXXXXXXXXXXXXXX XXX XX XXX XXXXXXXXXXXXXXXXXX
$:9,9,9,9,9,9,9,9.9,9 .4

playerOcolors $fe,$fe,100,100,100,100,100,100
rem playerOcolors $5c,$5c,$fe,$fe,$fe,$fe,$fe, $fe
rem running man pixel art created by PAC-MAN-RED

sprites
R
XXX L
ol XX
XXX
XX
XX

chiptunes
4,19,4,19,8
4,17,4,17,8
4,15,4,15,8
4,14,4,14,16
4,19,4,19,8
4,14,4,14,16
4,19,4,19,8
4,14,4,14,16

4,26,4,26,8
4,19,4,19,16
4,26,4,26,8
4,19,4,19,16

0,0,0,0,48
6,30,6,30,8
6,27,6,27,8
6,24,6,24,8
6,22,6,22,8
6,30,6,30,16
6,22,6,22,8
6,30,6,30,16
6,22,6,22,8
6,30,6,30,16

ORrRORFROROROD

Researching the original Vaporware product:

This collector acquisition might be the Game Loader prototype Atari Adaptor for the VIC-20! There are six switches on
the unit and it attaches to the back like a sidecar similar to other adapters for the Colecovision, Intellivision and Atari’s
own 5200 that contained hardware equivalent to an Atari 2600 inside.

You can see the cartridge port at 8:29 and the Motorola chip with the RAM array possibly for adding fantastic
Commodore graphics at 10:32. The MPU's use as early Micro Controller coprocessor is discussed at 12:35

Note the RAM Array is also 64K expanding the VIC-20's memory to match the Commodore 64:

https://youtu.be/EOyLak9X5nw

(Fantastic!!)
VIC 20COMPUTER WILL PLAY
ATARI GAMES CARTRIDGES

when you plug in our

GAME LOADER!

Wow!! Now yon can play all Atari game cartridges on your “VIC-20" Computer.” Atari
VCS cartridge video games, Activision, Imagic, M-Network cartridges will all play on your

“VIC-20" Computer,” when you use our new “GAME LOADER” plus you get fantastic
VIC-20"sound and graphics.

LISTPRICE $99.00 SALE $89.00 “15 DAY FREE TRIAL"
{Includes Free ATARI Game $32.50 List)

* We have the lowest VIC-20"prices p n o T E CTQ
[ebeomstuomns ENTERPRIZES

BOX 550, BARRINGTON, ILLINOIS 60010

* Welove our customers! Phone 312/382-5244 to order
VIC 20 3 & 2amark ot Commodsre Sleclroncs Lig

https://youtu.be/E0yLak9X5nw

